How do prebiotics benefit gut health?

July 20, 2023 3 min read

How do prebiotics benefit gut health?

Prebiotics are non-digestible fibers and complex carbohydrates that serve as food for the beneficial bacteria in the gut. When consumed, prebiotics pass through the digestive system mostly intact and reach the large intestine, where they are fermented by the gut microbiota. This fermentation process produces short-chain fatty acids (SCFAs), which are important for maintaining a healthy gut. Here are some ways that prebiotics benefit gut health:

  1. Promoting the growth of beneficial bacteria: Prebiotics selectively feed the beneficial bacteria in the gut, such as bifidobacteria and lactobacilli, while suppressing the growth of harmful bacteria.
  2. Improving gut barrier function: Prebiotics can help to improve the integrity of the gut barrier, which can prevent harmful substances from entering the bloodstream and causing inflammation.
  3. Reducing inflammation: The SCFAs produced by the fermentation of prebiotics can help to reduce inflammation in the gut and throughout the body.
  4. Supporting immune function: The gut microbiota plays a key role in immune function, and prebiotics can help to support the growth of beneficial bacteria that are important for immune health.

Studies have shown that consuming prebiotics can lead to improvements in gut health, including increases in beneficial bacteria, reductions in harmful bacteria, and improvements in gut barrier function and immune function. For example, a systematic review of 26 randomized controlled trials found that prebiotic supplementation was associated with improvements in gut microbiota composition, gut barrier function, and markers of immune function (Holscher, 2017) Overall, consuming prebiotic-rich foods or supplements can help to support the growth of beneficial bacteria in the gut and promote overall gut health.

Some examples of prebiotic-rich foods include:

  1. Chicory root: Chicory root is one of the richest sources of inulin, a type of prebiotic fiber.
  2. Jerusalem artichoke: Jerusalem artichokes are high in inulin and other prebiotic fibers.
  3. Garlic: Garlic contains a type of prebiotic fiber called fructooligosaccharides (FOS).
  4. Onions: Onions are a good source of FOS.
  5. Leeks: Leeks contain inulin, FOS, and other prebiotic fibers.
  6. Asparagus: Asparagus is high in inulin and other prebiotic fibers.
  7. Bananas: Bananas contain a type of prebiotic fiber called resistant starch.
  8. Oats: Oats contain a type of prebiotic fiber called beta-glucan.

Probiotics are live microorganisms that, when consumed in adequate amounts, confer a health benefit to the host. Probiotics can be found in fermented foods such as yogurt, kefir, kimchi, and sauerkraut, as well as in dietary supplements. Probiotics work by colonizing the gut with beneficial bacteria, which can improve gut health by promoting the growth of beneficial bacteria, suppressing the growth of harmful bacteria, and improving gut barrier function.

While prebiotics and probiotics both have benefits for gut health, they differ in their mechanisms of action. Prebiotics work by selectively feeding the beneficial bacteria in the gut, while probiotics work by adding beneficial bacteria to the gut. Both prebiotics and probiotics can be beneficial for gut health, and consuming a variety of prebiotic-rich foods and probiotic-containing foods or supplements can help to promote overall gut health.

References:

  1. Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients. 2013 Apr 22;5(4):1417-35. doi: 10.3390/nu5041417. PMID: 23609775; PMCID: PMC3705355.
  2. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017 Aug;14(8):491-502. doi: 10.1038/nrgastro.2017.75. Epub 2017 Jun 14. PMID: 28611480.
  3. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014 Aug;11(8):506-14. doi: 10.1038/nrgastro.2014.66. Epub 2014 May 6. PMID: 24848255.
  4. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Guarner F, Respondek F, Whelan K, Coxam V, Davicco MJ, Léotoing L, Wittrant Y, Delzenne NM, Cani PD, Neyrinck AM, Meheust A. Prebiotic effects: metabolic and health benefits. Br J Nutr. 2010 Aug;104 Suppl 2:S1-S63. doi: 10.1017/S0007114510003363. PMID: 20920376.


Leave a comment


Also in GUT HEALTH KNOWLEDGE CENTER

How The Gut Microbiome Modulates Healthy Aging - Cover Image
How The Gut Microbiome Modulates Healthy Aging?

July 20, 2024 17 min read

Aging is inevitable, but why do some people age better than others? The answer lies in a mix of genetic, environmental, and lifestyle factors. Another key player is the gut microbiome, which might hold the key to longevity and health. Using a review by Ghosh et al. (2022), we explore the role of the gut microbiome in healthy aging, chronic disease development, and strategies to help you age healthily. 

Read More
The Human Milk Oligosaccharide - 2'-Fucosyllactose (2'-FL) Prevents Intestinal Inflammation Cover Image
The Human Milk Oligosaccharide - 2'-Fucosyllactose (2'-FL) Prevents Intestinal Inflammation, Study Finds

July 12, 2024 7 min read

Human milk oligosaccharides (HMOs), particularly the glycan known as 2’-Fucosyllactose (2’-FL), have been a cornerstone in neonatal nutrition, offering the first sweet taste and vital energy while establishing a thriving gut microbiome. Recent studies have expanded the understanding of these substances, with research showing 2’-FL's pivotal role in not only fostering beneficial gut bacteria but also in potentially mitigating adult conditions such as colitis. The Schalich et al. (2024) study further explores this by investigating 2’-FL's ability to modulate gut microbial metabolism, suggesting a promising future for HMOs in adult disease prevention and therapy, particularly for inflammatory bowel diseases like colitis.
Read More
How Akkermansia Survives and Thrives in the Gut?
How Akkermansia Survives and Thrives in the Gut?

June 27, 2024 6 min read

Discover some of the unique mechanisms Akkermansia employs to survive in the human gut and the genetics behind how this fascinating bacterium can maintain cholesterol homeostasis.
Read More