July 09, 2023 2 min read
The gut-brain axis is a bidirectional communication system between the gut and the brain. It involves the nervous system, the immune system, and the endocrine system, and is influenced by the gut microbiome, which plays a critical role in regulating gut-brain communication (1).
One way that the gut communicates with the brain is through the vagus nerve, which runs from the brainstem to the gut and carries signals in both directions. The gut microbiome can influence the activity of the vagus nerve, which in turn can affect brain function and behavior (2).
Another way that the gut communicates with the brain is through the production of neurotransmitters and other signaling molecules that can affect brain function. For example, the gut produces a number of neurotransmitters, including serotonin, which plays a role in regulating mood and is also involved in the regulation of gastrointestinal function (3).
The gut microbiome can also affect the immune system, which plays an important role in regulating inflammation in the body. Chronic inflammation has been linked to a number of diseases, including depression and anxiety, and the gut microbiome can influence the level of inflammation in the body (4).
The gut-brain axis is a complex system, and the mechanisms involved are still being studied. However, the evidence to date suggests that maintaining a healthy gut microbiome is an important aspect of overall brain function and mental health.
References:
January 19, 2025 13 min read
Human milk oligosaccharides (HMOs) are key components of breast milk that may influence brain development and cognitive function in infants. Fucosylated HMOs impact the gut-brain axis and immune function, while sialylated HMOs directly support neural development, synapse formation, and brain cell communication, contributing to lifelong brain health. In this article, we explore the potential benefits of combining multiple types of HMOs.
January 12, 2025 13 min read
January 05, 2025 6 min read